주요 메뉴 바로가기 (상단) 본문 컨텐츠 바로가기 주요 메뉴 바로가기 (하단)

DGIST 로봇 기계전자공학과 박상현 교수팀, 연합학습 기반 새로운 의료 AI 모델 개발

에너지경제 조회수  

1

▲사진=DGIST 로봇및기계전자공학과 박상현 교수팀이 서버에서 의료영상 분석 중인 AI 모델을 확인하고 있는 모습 (디지스트 제공)

대규모 의료인공지능 시대 첫걸음 기대

대구 =에너지경제신문 손중모기자 DGIST 로봇및기계전자공학과 박상현 교수팀이 연합학습 기법을 활용해 여러 의료기관에 분산된 의료영상 데이터를 효과적으로 학습해 신체 장기들을 정확하게 영역화할 수 있는 기술을 개발했다고 2일 밝혔다.

스탠퍼드 대학 Kilian Pohl, Ehsan Adeli 교수팀과 공동연구를 통해 여러 병원에서 각기 다른 목적으로 사용되는 의료영상 데이터를 효과적으로 학습해 다양한 신체 장기를 정확하게 영역화할 수 있는 기술을 개발한 연구팀은, 향후 대규모 의료인공지능 모델 개발에 크게 기여할 것으로 기대하고 있다.

병원 등 각 의료기관에서는 다양한 목적으로 신체 각 부위의 장기 영상 데이터를 가지고 있다.

하지만, 원활하고 정확한 의료행위를 위해 개별 기관에서 가지고 있지 못한 각 의료 데이터를 활용해 다중 장기 영역화를 위한 인공지능 모델 개발이 필요한데, 기존의 경우 각 의료기관의 영상 데이터를 중앙서버에 모아 학습하는 방식으로 진행해 데이터 유출에 민감한 의료 분야에서 실제로 적용하기 어려웠다.

또한, 각 기관마다 영상 활용을 위한 관심 영역이 달라 이를 분석해서 다양한 영역을 동시에 영역화 하는 모델을 학습하는데 한계가 존재했다.

이에 박상현 교수팀은 서로 다른 장기의 레이블 레이블: 파일의 관리나 처리의 편의를 위하여 파일에 붙이는 특별한 항목 표시 기록을 가지는 분산 데이터들을 유출 없이 효과적으로 활용하기 위해 연합학습을 기반으로 한 다중 장기 영역화 모델을 제안했다.

연합학습을 활용할 경우 분산된 데이터를 직접 공유없이 상호 간 협력으로 AI 모델을 학습할 수 있다.

하지만, 각 분산 데이터를 통해 획득한 정보를 취합하는 과정에서 정보의 손실로 \’망각(Catastrophic Forgetting)화 현상\’ 문제가 발생하며, 서로 다른 관심 영역에 대한 레이블을 가진 데이터들로 인해 학습이 불안정해지면서 모델이 구축되지 않거나, 학습속도가 느려지는 단점이 존재한다.

연구팀은 이를 해결하기 위해 지식 증류(Knowledge Distillation) 기법을 제안했다.

먼저, 다중 헤드 U-Net 모델을 활용해 각 기관의 서로 다른 각 신체 장기 영상 데이터를 영역화하고, 공유 임베딩 학습으로 영역화된 영상을 공유하면서, 각 기관에서 AI 모델 학습 시 글로벌 모델과 사전 훈련된 특정 장기 영역화 모델의 지식을 함께 활용해 연합학습을 수행하도록 했다.

그 결과 기존에 제안된 모델보다 적은 파라미터 및 연산량을 활용하면서 성능은 더 우수한 새로운 기술을 개발했다.

연구팀은 개발된 기술을 검증하기 위해 7개의 서로 다른 영역화 레이블을 가지는 복부 CT 데이터셋에 적용했다.

검증 결과 기존의 다중 장기 영역화 기법 모델이 연합학습에서 평균 66.82% 이하의 성능을 기록한 것에 비해, 새로 개발한 기법은 평균 71.00%의 높은 성능을 기록했고, 공유 임베딩 학습으로 추론 시간도 단축했다.

박상현 교수는 “이번 연구를 통해 여러 의료기관의 의료영상 데이터를 공유하지 않더라도 효과적으로 의료 AI를 학습하고 활용할 수 있도록, 각 관심 장기들의 영역화를 수행하기 위한 기술을 개발할 수 있었다” 며, “새롭게 개발한 기술이 의료영상 분석에 큰 도움이 될 것으로 생각하며, 향후 대규모 의료인공지능 모델 개발에도 기여할 것으로 기대하고 있다”고 밝혔다.

한편, 이번 연구는 대구경북과학기술원 일반사업과 대구디지털혁신진흥원의 지원을 통해 수행했으며, 연구 결과는 그 우수성을 인정받아 의료 인공지능 분야 최상위 학술지인 \’Medical Image Analysis (MedIA)\’에 게재됐다.

에너지경제
content@newsbell.co.kr

댓글0

300

댓글0

[경제] 랭킹 뉴스

  • 무려 98만 명 초토화 “코로나 때가 더 낫다?”…무너지는 자영업자들
  • “우려하던 일 벌어지고 있다”… 무너지는 사장님들 ‘발 동동’
  • “한국 가고 싶어요” 북한군 포로 귀순 가능성은…
  • “탈핵 선언에 주춤했지만”…15년만에 최고치 기록했죠
  • 9년 만에 전 계열사 임원 2,000명 긴급 소집한 삼성, 이유 분명했다
  • “돌 선물로 제격” 요즘 골드바보다 인기 더 높아졌다는 상품, 바로…

[경제] 공감 뉴스

  • ‘세수 펑크’에 월급쟁이들 세금 얼마나 냈나 봤더니… 충격입니다
  • “매장 늘려달라 아우성”… 해외에서 난리난 한국 음식, 예상 밖 반응에 ‘깜짝’
  • “여기였어?” 김숙도 세 번이나 사려다 포기했다는 100억대 아파트
  • 중국산 부품 사용하지만 더 비싸다고요? 시총 ‘뚝’ 떨어진 국내기업
  • “신해철 사망 이르게 한 의사가 또?”…의료인 면허 규정 어떻길래
  • “지금 국장 들어가도 될까요?”에 전문가들의 대답, 충격입니다

당신을 위한 인기글

  • “3천만 원으로 스포티지 잡는다” 토레스 하이브리드, 예비 오너들 사로잡는 사양 공개
  • “한남동 건물 60억 세금 추징” 이하늬의 1억 원대 벤츠 AMG, 탈세 의혹에 눈길
  • “이건 진짜 선 넘었지” 4기통에 1억 5천 받는 벤츠 오픈카
  • “월 50만원에 5시리즈 오너된다!” 국산차만큼 저렴해진 수입차 근황
  • “코란도가 이렇게 나와야지” 아빠들 지갑 싹 털릴 터프한 SUV 공개
  • “전기 밴은 나야 둘이 될 수 없어” 폭스바겐에 도전장 내민 기아 PV5, 승자는?
  • “일본산 지바겐 나온다!” 강력한 오프로드 성능에 하이브리드 연비까지 갖춘 렉서스 GX
  • “가정 교육을 어떻게 받은 거니” 17세 소년, 흡연하다 무면허 적발

함께 보면 좋은 뉴스

  • 1
    '차가운 바람→딱딱해진 그라운드' 변수로 떠오른 날씨...양 팀 사령탑도 "대비해야 할 부분" 언급 [MD목동]

    스포츠 

  • 2
    리디아 고 "소중한 순간 영원히" 올림픽 금·은·동메달 기념 문신

    뉴스 

  • 3
    “팰리세이드가 작아 보이네”… 기아 대형 SUV, 스펙 공개에 ‘깜짝’

    차·테크 

  • 4
    한 시간의 비행으로 다양한 매력에 빠질 수 있는 그곳, 후쿠오카 여행의 장&단점

    여행맛집 

  • 5
    “많이 울었는데…” 장윤정에게 도움 받았다고 밝힌 김선근 전 아나운서

    연예 

[경제] 인기 뉴스

  • 무려 98만 명 초토화 “코로나 때가 더 낫다?”…무너지는 자영업자들
  • “우려하던 일 벌어지고 있다”… 무너지는 사장님들 ‘발 동동’
  • “한국 가고 싶어요” 북한군 포로 귀순 가능성은…
  • “탈핵 선언에 주춤했지만”…15년만에 최고치 기록했죠
  • 9년 만에 전 계열사 임원 2,000명 긴급 소집한 삼성, 이유 분명했다
  • “돌 선물로 제격” 요즘 골드바보다 인기 더 높아졌다는 상품, 바로…

지금 뜨는 뉴스

  • 1
    [30년 만의 대개조] 4. 행정체제 개편, 인천 정치판 뿌리째 흔든다

    뉴스 

  • 2
    '하얼빈 金' 김채연, 사대륙선수권 우승...개인최고점 올 경신

    스포츠 

  • 3
    고구마죽 레시피 두유제조기 고구마죽 만들기 간단한 아침 집밥

    여행맛집 

  • 4
    장원영, 할리우드에서도 빛나는 'chill걸'…화보 같은 일상

    연예 

  • 5
    “너무 답답했다, 바뀌어야 한다” 日37세 우완의 절치부심, KKKK로 부활예고…류현진 추격전 재개

    스포츠 

[경제] 추천 뉴스

  • ‘세수 펑크’에 월급쟁이들 세금 얼마나 냈나 봤더니… 충격입니다
  • “매장 늘려달라 아우성”… 해외에서 난리난 한국 음식, 예상 밖 반응에 ‘깜짝’
  • “여기였어?” 김숙도 세 번이나 사려다 포기했다는 100억대 아파트
  • 중국산 부품 사용하지만 더 비싸다고요? 시총 ‘뚝’ 떨어진 국내기업
  • “신해철 사망 이르게 한 의사가 또?”…의료인 면허 규정 어떻길래
  • “지금 국장 들어가도 될까요?”에 전문가들의 대답, 충격입니다

당신을 위한 인기글

  • “3천만 원으로 스포티지 잡는다” 토레스 하이브리드, 예비 오너들 사로잡는 사양 공개
  • “한남동 건물 60억 세금 추징” 이하늬의 1억 원대 벤츠 AMG, 탈세 의혹에 눈길
  • “이건 진짜 선 넘었지” 4기통에 1억 5천 받는 벤츠 오픈카
  • “월 50만원에 5시리즈 오너된다!” 국산차만큼 저렴해진 수입차 근황
  • “코란도가 이렇게 나와야지” 아빠들 지갑 싹 털릴 터프한 SUV 공개
  • “전기 밴은 나야 둘이 될 수 없어” 폭스바겐에 도전장 내민 기아 PV5, 승자는?
  • “일본산 지바겐 나온다!” 강력한 오프로드 성능에 하이브리드 연비까지 갖춘 렉서스 GX
  • “가정 교육을 어떻게 받은 거니” 17세 소년, 흡연하다 무면허 적발

추천 뉴스

  • 1
    '차가운 바람→딱딱해진 그라운드' 변수로 떠오른 날씨...양 팀 사령탑도 "대비해야 할 부분" 언급 [MD목동]

    스포츠 

  • 2
    리디아 고 "소중한 순간 영원히" 올림픽 금·은·동메달 기념 문신

    뉴스 

  • 3
    “팰리세이드가 작아 보이네”… 기아 대형 SUV, 스펙 공개에 ‘깜짝’

    차·테크 

  • 4
    한 시간의 비행으로 다양한 매력에 빠질 수 있는 그곳, 후쿠오카 여행의 장&단점

    여행맛집 

  • 5
    “많이 울었는데…” 장윤정에게 도움 받았다고 밝힌 김선근 전 아나운서

    연예 

지금 뜨는 뉴스

  • 1
    [30년 만의 대개조] 4. 행정체제 개편, 인천 정치판 뿌리째 흔든다

    뉴스 

  • 2
    '하얼빈 金' 김채연, 사대륙선수권 우승...개인최고점 올 경신

    스포츠 

  • 3
    고구마죽 레시피 두유제조기 고구마죽 만들기 간단한 아침 집밥

    여행맛집 

  • 4
    장원영, 할리우드에서도 빛나는 'chill걸'…화보 같은 일상

    연예 

  • 5
    “너무 답답했다, 바뀌어야 한다” 日37세 우완의 절치부심, KKKK로 부활예고…류현진 추격전 재개

    스포츠 

공유하기